Abstract
Phytosulfokine-α (PSK-α), a tyrosine-sulfated pentapeptide with the sequence YSO3IYSO3TQ, is widely distributed across the plant kingdom and plays multiple roles in plant growth, development, and immune response. Here, we report a novel type of phytosulfokine, PSK-δ, and its precursor proteins (MtPSKδ, LjPSKδ, and GmPSKδ1), specifically from legume species. The sequence YSO3IYSO3TN of sulfated PSK-δ peptide is different from PSK-α at the last amino acid. Expression pattern analysis revealed PSK-δ-encoding precursor genes to be expressed primarily in legume root nodules. Specifically, in Medicago truncatula, MtPSKδ expression was detected in root cortical cells undergoing nodule organogenesis, in nodule primordia and young nodules, and in the apical region of mature nodules. Accumulation of sulfated PSK-δ peptide in M. truncatula nodules was detected by LC/MS. Application of synthetic PSK-δ peptide significantly increased nodule number in legumes. Similarly, overexpression of MtPSKδ in transgenic M. truncatula markedly promoted symbiotic nodulation. This increase in nodule number was attributed to enhanced nodule organogenesis induced by PSK-δ. Additional genetic evidence from the MtPSKδ mutant and RNA interference assays suggested that the PSK-δ and PSK-α peptides function redundantly in regulating nodule organogenesis. These results suggest that PSK-δ, a legume-specific novel type of phytosulfokine, promotes symbiotic nodulation by enhancing nodule organogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.