Abstract

The purpose of this paper is to construct an unconstrained optimal control problem by using a least-squares approach for the constrained distributed optimal control problem associated with incompressible Stokes equations. The constrained equations are reformulated to the equivalent first-order system by introducing vorticity, and then the least-squares functional corresponding to the system is enforced via a penalty term to the objective functional. The existence of a solution of the unconstrained optimal control problem is proved, and the convergence of this solution to that of unpenalized one is demonstrated as the penalty parameter tends to zero. Finite element approximations with error estimates are studied, and the relevant computational experiments are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.