Abstract
There are various different forms of magnetohydrodynamic(MHD) equations and they have been studied for years due to its complicated coupling between variables. This paper proposes to use an equivalently transformed MHD equations with Elsasser variables and the least squares finite element method to find the approximation to them. Introducing new variables by combining fluid velocity and magnetic field yields a Navier–Stokes like system. Then the first-order system least squares method using displacement recasts the transformed MHD equations into a system of first order partial differential equations and the Newton’s algorithm linearizes the problem. An L 2 -residual functional is defined to minimize and the unique existence of corresponding weak solution is shown. Finally, the convergence of proposed approximation is analyzed and several numerical examples are presented to verify the theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.