Abstract

Grid-synchronization may be the most significant task in order to integrate renewable energy sources (RESs) and electric vehicles (EVs) into the power grid. The popular technique for grid synchronization is the power based phase locked loop (PLL). The major challenges that one encounters to design a robust power based PLL is the filter design inside the power based PLL control loop, and estimating the grid voltage parameters under frequency drift conditions. A wide bandwidth should be considered during filter design if a wide range of frequency variations are predicted in the grid voltage. The traditional filters cause a large phase delay if a wide bandwidth is considered during filter design. As a result, it degrades the transient performance of the power based PLL. In order to improve the transient performance of the PLL, this paper adopted a Fourier linear combiner (FLC) filter inside the PLL control loop. Moreover, a feedback loop is used to make the FLC frequency adaptive in order to estimate the grid voltage parameter when grid frequency drift occurs. Simulation and experimental results are provided to verify the proposed technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call