Abstract

This paper presents a deep reinforcement learning (DRL)-based motion control method to provide unmanned aerial vehicles (UAVs) with additional flexibility while flying across dynamic unknown environments autonomously. This method is applicable in both military and civilian fields such as penetration and rescue. The autonomous motion control problem is addressed through motion planning, action interpretation, trajectory tracking, and vehicle movement within the DRL framework. Novel DRL algorithms are presented by combining two difference-amplifying approaches with traditional DRL methods and are used for solving the motion planning problem. An improved Lyapunov guidance vector field (LGVF) method is used to handle the trajectory-tracking problem and provide guidance control commands for the UAV. In contrast to conventional motion-control approaches, the proposed methods directly map the sensorbased detections and measurements into control signals for the inner loop of the UAV, i.e., an end-to-end control. The training experiment results show that the novel DRL algorithms provide more than a 20% performance improvement over the state-of-the-art DRL algorithms. The testing experiment results demonstrate that the controller based on the novel DRL and LGVF, which is only trained once in a static environment, enables the UAV to fly autonomously in various dynamic unknown environments. Thus, the proposed technique provides strong flexibility for the controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.