Abstract

The operation of traffic signal control is of significant importance in traffic management and operation practice, especially under oversaturated condition during the morning and afternoon peak hours. However, the conventional signal control systems showed the limitations in signal timing and phasing under oversaturated situations. This paper proposes a multi-agent adaptive signal control system in the context of group-based phasing techniques. The adaptive signal control system is able to acquire knowledge on-line based on the perceived traffic states and the feedback from the traffic environment. Reinforcement learning with eligibility trace is applied as the learning algorithm in the multi-agent system. As a result, the signal controller makes an intelligent timing decision. Feature-based function approximation method is incorporated into reinforcement learning framework to improve the learning efficiency as well as the quality of signal timing decisions. The learning process of the learning-based signal control is carried out with the aid of a microscopic traffic simulation model. A benchmarking system, an optimized group-based vehicle actuated signal control system, is compared with the proposed adaptive signal control systems. The simulation results show that the proposed adaptive group-based signal control system has the potential to improve the mobility efficiency under different congested situations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call