Abstract

Estimations of deforestation are crucial as increased levels of deforestation induce serious environmental problems. However, it is challenging to perform investigations over extensive areas, such as the Amazon rainforest, due to the vast size of the region and the difficulty of direct human access. Satellite imagery can be used as an effective solution to this problem; combining optical images with synthetic aperture radar (SAR) images enables deforestation monitoring over large areas irrespective of weather conditions. In this study, we propose a learning strategy for multi-modal deforestation estimations on this basis. Images from three different satellites, Sentinel-1, Sentinel-2, and Landsat 8, were utilized to this end. The proposed algorithm overcomes visibility limitations due to a long rainy season of the Amazon by creating a multi-modal dataset using supplementary SAR images, achieving high estimation accuracy. The dataset is composed of satellite data taken on a daily basis with relatively less monthly generated, ground truth masking data, which is called the many-to-one-mask condition. The Normalized Difference Vegetation Index and Normalized Difference Soil Index bands are selected to comprise the datasets. This yields better detection performance and a shorter training time than datasets consisting of RGB or all bands. Multiple deep neural networks are independently trained for each modality and an appropriate fusion method is developed to detect deforestation. The proposed method utilizes the distance similarity of the predicted deforestation rate to filter prediction results. The elements with high degrees of similarity are merged into the final result with average and denoising operations. The performances of five network variants of the U-Net family are compared, with Attention U-Net observed to exhibit the best prediction results. Finally, the proposed method is utilized to estimate the deforestation status of novel queries with high accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call