Abstract
This paper proposes a learning framework for solving the inverse kinematics (IK) problem of high DOF redundant manipulators. These have several possible combinations to get the end effector (EE) pose. Therefore, for a given EE pose, several joint angle vectors can be associated. However, for a given EE pose, if a set of joint angles is parameterized, the IK problem of redundant manipulators can be reduced to that of non-redundant ones, such that the closed-form analytical methods developed for non-redundant manipulators can be applied to obtain the IK solution. In this paper, some redundant manipulator’s joints are parameterized through workspace clustering and configuration space clustering of the redundant manipulator. The growing neural gas network (GNG) is used for workspace clustering while a neighborhood function (NF) is introduced in configuration space clustering. The results obtained by performing a series of simulations and experiments on redundant manipulators show the effectiveness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.