Abstract

Medical image classification and diagnosis based on machine learning has made significant achievements and gradually penetrated the healthcare industry. However, medical data characteristics such as relatively small datasets for rare diseases or imbalance in class distribution for rare conditions significantly restrains their adoption and reuse. Imbalanced datasets lead to difficulties in learning and obtaining accurate predictive models. This paper follows the FAIR paradigm and proposes a technique for the alignment of class distribution, which enables improving image classification performance in imbalanced data and ensuring data reuse. The experiments on the acne disease dataset support that the proposed framework outperforms the baselines and enable to achieve up to 5% improvement in image classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.