Abstract

In the curriculum of a Computer Engineering program, concepts like parallelism, concurrency, consistency, or atomicity are usually addressed in separate courses due to their thoroughness and extension. Isolating such concepts in courses helps students not only to focus on specific aspects, but also to experience the reality of working with modern computer systems, where those concepts are often detached in different abstraction levels. However, due to such an isolation, it exists a risk of inducing to the students an absence of interactions between these concepts, and, by extension, between the different abstraction levels of a system.This paper proposes a learning experience showcasing the interactions between abstraction levels addressed in laboratory sessions of different courses. The driving example is a parallel ray tracer. In the different courses, students implement and assemble components of this application from the algorithmic level of the tracer to the assembly instructions required to guarantee atomicity. Each lab focuses on a single abstraction level, but shows students the interactions with the rest of the levels. Technical results and student learning outcomes through the analysis of surveys validate the proposed experience and confirm the students learning improvement with a more integrated view of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.