Abstract
Resource allocation algorithms in wireless networks can require solving complex optimization problems at every decision epoch. For large scale networks, when decisions need to be taken on time scales of milliseconds, using standard convex optimization solvers for computing the optimum can be a time-consuming affair that may impair real-time decision making. In this paper, we propose to use Data-driven and Deep Feedforward Neural Networks (DFNN) for learning the relation between the inputs and the outputs of two such resource allocation algorithms that were proposed in Nguyen et al. (2019, 2020). On numerical examples with realistic mobility patterns, we show that the learning algorithm yields an approximate yet satisfactory solution with much less computation time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.