Abstract
Injection molding is a pivotal industrial process renowned for its high production speed, efficiency, and automation. Controlling the motion speed of injection molding machines is a crucial factor that influences production processes, directly affecting product quality and efficiency. This paper aims to tackle the challenge of achieving optimal tracking control of injection speed in a standard class of injection molding machines (IMMs) characterized by nonlinear dynamics. To achieve this goal, we propose a learning-based model predictive control (LMPC) scheme that incorporates Gaussian process regression (GPR) to predict and model uncertainty in the injection molding process (IMP). Specifically, the scheme formulates a nonlinear tracking control problem for injection speed, utilizing a GPR-based learning residual model to capture uncertainty and provide accurate predictions. It learns the dynamics model and historical data of the IMM, automatically adjusting the injection speed according to target requirements for optimal production control. Additionally, the optimization problem is efficiently solved using a control-constrained differential dynamic programming approach. Finally, we conduct comprehensive numerical experiments to demonstrate the effectiveness and efficiency of the proposed LMPC scheme for controlling injection speed in IMP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.