Abstract

Analysis and improvement of power grids resilience and efficiency requires the topologies and geographical coordinates of the real transmission networks. However, due to security reasons, such topologies and particularly the locations of the substations and lines are usually not publicly available. In this work, we thoroughly study the structural properties of the U.S. Western Interconnection grid (WI) and, based on the results, present the network imitating method based on learning (NIMBLE) for generating synthetic spatially embedded networks with similar properties to a given grid. We apply NIMBLE to the WI and show that it can generate networks with similar structural and spatial properties as well the same level of robustness to failures to the WI, without revealing the real locations of the lines and substations. To the best of our knowledge, this is the first attempt to consider the spatial distributions of the buses (nodes) and lines and their importance in generating synthetic grids. Moreover, this is the first time that the power flows and vulnerability against failures are considered in evaluating a synthetic power grid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.