Abstract
We propose the Topology-Preserving Segmentation Network, a deformation-based model that can extract objects in an image while maintaining their topological properties. This network generates segmentation masks that have the same topology as the template mask, even when trained with limited data. The network consists of two components: the Deformation Estimation Network, which produces a deformation map that warps the template mask to enclose the region of interest, and the Beltrami Adjustment Module, which ensures the bijectivity of the deformation map by truncating the associated Beltrami coefficient based on Quasiconformal theories. The proposed network can also be trained in an unsupervised manner, eliminating the need for labeled training data. This is achieved by incorporating an unsupervised segmentation loss. Our experimental results on various image datasets show that TPSN achieves better segmentation accuracy than state-of-the-art models with correct topology. Furthermore, we demonstrate TPSN’s ability to handle multiple object segmentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.