Abstract
Foreground and background segmentation is a typical problem in computer vision and medical imaging. In this paper, we propose a new learning based approach for 3D segmentation, and we show its application on colon detagging. In many problems in vision, both the foreground and the background observe large intra-class variation and inter-class similarity. This makes the task of modeling and segregation of the foreground and the background very hard. The framework presented in this paper has the following key components: (1) We adopt probabilistic boosting tree [9] for learning discriminative models for the appearance of complex foreground and background. The discriminative model ratio is proved to be a pseudo-likelihood ratio modeling the appearances. (2) Integral volume and a set of 3D Haar filters are used to achieve efficient computation. (3) We devise a 3D topology representation, grid-line, to perform fast boundary evolution. The proposed algorithm has been tested on over 100 volumes of size 500 × 512 × 512 at the speed of 2 ~ 3 minutes per volume. The results obtained are encouraging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.