Abstract

Min-degree constrained minimum spanning tree (md-MST) problem is an NP-hard combinatorial optimization problem seeking for the minimum weight spanning tree in which the vertices are either of degree one (leaf) or at least degree d ≥ 2. md-MST problem is new to the literature and very few studies have been conducted on this problem in deterministic graph. md-MST problem has several appealing real-world applications. Though in realistic applications the graph conditions and parameters are stochastic and vary with time, to the best of our knowledge no work has been done on solving md-MST problem in stochastic graph. This paper proposes a decentralized learning automata-based algorithm for finding a near optimal solution to the md-MST problem in stochastic graph. In this work, it is assumed that the weight associated with the graph edge is random variable with a priori unknown probability distribution. This assumption makes the md-MST problem incredibly harder to solve. The proposed algorithm exploits an intelligent sampling technique avoiding the unnecessary samples by focusing on the edges of the min-degree spanning tree with the minimum expected weight. On the basis of the Martingale theorem, the convergence of the proposed algorithm to the optimal solution is theoretically proven. Extensive simulation experiments are performed on the stochastic graph instances to show the performance of the proposed algorithm. The obtained results are compared with those of the standard sampling method in terms of the sampling rate and solution optimality. Simulation experiments show that the proposed method outperforms the standard sampling method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call