Abstract
We propose a novel method to enhance the performance of coordinate-MLPs (also referred to as neural fields) by learning instance-specific positional embeddings. End-to-end optimization of positional embedding parameters along with network weights leads to poor generalization performance. Instead, we develop a generic framework to learn the positional embedding based on the classic graph-Laplacian regularization, which can implicitly balance the trade-off between memorization and generalization. This framework is then used to propose a novel positional embedding scheme, where the hyperparameters are learned per coordinate (i.e instance) to deliver optimal performance. We show that the proposed embedding achieves better performance with higher stability compared to the well-established random Fourier features (RFF). Further, we demonstrate that the proposed embedding scheme yields stable gradients, enabling seamless integration into deep architectures as intermediate layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.