Abstract
Electroencephalography (EEG) artifacts are very common in clinical diagnosis and can heavily impact diagnosis. Manual screening of artifact events is labor-intensive with little benefit. Therefore, exploring algorithms for automatic detection and classification of EEG artifacts can significantly assist clinical diagnosis. In this paper, we propose a learnable and explainable wavelet neural network (WaveNet) for EEG artifact detection and classification. The model is powered by the wavelet decomposition block based on invertible neural network, which can extract signal features without information loss, and a tree generator for building wavelet tree structure automatically. They provide the model with good feature extraction capabilities and explainability. To evaluate the model's performance more fairly, we introduce the base point level matching score (BASE) and the Event-Aligned Compensation Scoring (EACS) at the event level as two metrics for model performance evaluation. On the challenging Temple University EEG Artifact (TUAR) dataset, our model outperforms other baselines in terms of F1-score for both artifact detection and classification tasks. The case study also validates the model's ability to offer explainability for predictions based on frequency band energy, suggesting potential applications in clinical diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.