Abstract

It is now reasonably well established that there is a correlation between high-speed solar wind streams and coronal holes. It has been concluded that a significant addition of momentum and/or energy in the region of supersonic flow is needed to explain the observed particle flux and flow speed observed in the high-speed streams. The most likely source of this additional momentum appears to be magnetohydrodynamic (MHD) waves propagating up from the solar surface. The present investigation is concerned with the propagation of MHD waves in a structure of finite transverse size, taking into account the consequences for the acceleration of high-speed solar wind streams. A waveguide solution for a model coronal hole is described, giving attention to a geometric or ray analysis of the slab waveguide, a wave mode analysis, an analytic solution of the dispersion relation for high-frequency waves, and the calculation of the time-averaged wave force.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call