Abstract

Adverse health events associated with the exposure of healthcare workers to antineoplastic drugs are well documented in literature and are often related to the chemical contamination of work surfaces. It is therefore crucial for healthcare professionals to validate the efficiency of safety procedures by periodic biological and environmental monitoring activities where the main methodological limitations are related to the complexity, in terms of chemical-physical features and chemical-biological stability, of the drugs analyzed. Here we describe the evaluation and application of a UHPLC-MS/MS based protocol for the environmental monitoring of hospital working areas potentially contaminated with methotrexate, iphosphamide, cyclophosphamide, doxorubicin, irinotecan, and paclitaxel. This methodology was used to evaluate working areas devoted to the preparation of chemotherapeutics and combination regimens at the University Hospital "San Giovanni di Dio e Ruggi d'Aragona" in Salerno (Italy). Our analyses allowed to uncover critical aspects in both working protocols and workspace organization, which highlighted, among others, cyclophosphamide and iphosphamide contamination. Suitable adjustments adopted after our environmental monitoring campaign significantly reduced the exposure risk for healthcare workers employed in the unit analyzed. The use of sensitive analytical approaches such as LC-MS/MS coupled to an accurate wiping procedure in routine environmental monitoring allows to effectively improve chemical safety for exposed workers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.