Abstract

A layered matrix encoding cascade genetic algorithm and particle swarm optimization approach (GA-PSO) for unit commitment and economic load dispatch problem in a thermal power system is presented in this paper. The tasks of determining and allocating power generation to different thermal units in a way that the total power production cost is at the minimum subject to equality and inequality constraints makes unit commitment and economic load dispatch challenging. A case study, based on the thermal power generation problem presented in [1], is used to demonstrate the effectiveness of the proposed method in generating a cost-effective power generation schedule. The schedule obtained is compared with that of Linear Programming (LP) as reported in [1]. The results show that the proposed GA-PSO approach outperforms LP in solving the unit commitment and economic load dispatch problem for thermal power generation system in this case study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.