Abstract
The main challenge of attribute reduction in large data applications is to develop a new algorithm to deal with large, noisy, and uncertain large data linking multiple relevant data sources, structured or unstructured. This paper proposes a new and efficient layered-coevolution-based attribute-boosted reduction algorithm (LCQ-ABR*) using adaptive quantum-behavior particle swarm optimization (PSO). First, the quantum rotation angle of an evolutionary particle is updated by a dynamic change of self-adapting step size. Second, a self-adaptive partitioning strategy is employed to group particles into different memeplexes, and the quantum-behavior mechanism with the particles’ states depicted by the wave function cooperates to achieve superior performance in their respective memeplexes. Third, a new layered coevolutionary model with multiagent interaction is constructed to decompose a complex attribute set, and it can self-adapt the attribute sizes among different layers and produce the reasonable decompositions by exploiting any interdependence among multiple relevant attribute subsets. Fourth, the decomposed attribute subsets are evolved to compute the positive region and discernibility matrix by using their best quantum particles, and the global optimal reduction set is induced successfully. Finally, extensive comparative experiments are provided to illustrate that LCQ-ABR* has better feasibility and effectiveness of attribute reduction on large-scale and uncertain dataset problems with complex noise as compared with representative algorithms. Moreover, LCQ-ABR* can be successfully applied in the consistent segmentation for neonatal brain three-dimensional MRI, and the consistent segmentation results further demonstrate its stronger applicability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.