Abstract
The structural engineering of active materials at the nanoscale level is crucial to improving the performance of electrochromic devices. However, an insufficient structural design inevitably results in limited electron/ion transportation and inadequate electrochromic performance. Herein, a new type of layer-stacked nanowire/nanosheet homostructure is proposed for enhancing the electrochromic properties of transition metal oxide films. Benefiting from the one-pot feature integration of nanowire and nanosheet structures, the NiO film with a unique homostructure delivers ultra-large optical modulation up to 93.4% at 550 nm and a high coloration efficiency of 72.1 cm2 C-1 in comparison with NiO-based materials. In addition, the film maintains 91% of its optical modulation over 1000 cycles of coloration and bleaching processes. Furthermore, the high performance of the device was verified by integrating the NiO film with the TiO2 ion storage layer in assembled smart windows with a dual function of electrochromic and energy storage. As a proof of concept, the integration of solar cells with electrochromic devices demonstrates the great significance of self-powered smart windows for energy-saving. To this end, such a strategy of structural design for electrochromic films would offer a distinctive pathway toward studying high-performance electrochromic systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.