Abstract

In this paper, a novel lattice-partition-based downlink non-orthogonal multiple access framework is proposed. This framework is motivated by recognizing the algebraic structure behind the previous scheme recently proposed by Shieh and Huang as a lattice partition in $ \mathbb {Z}$ and is in fact a generalization of the scheme to any base lattice. The schemes in the proposed framework enjoy many desirable properties such as explicit and systematic design and discrete input distributions. Moreover, the proposed method only requires a limited knowledge of channel parameters. The rates achieved by the proposed scheme with any base lattice and with single-user decoding (i.e., without successive interference cancellation) are analyzed, and a universal upper bound on the gap to the multiuser capacity is obtained as a function of the normalized second moment of the base lattice. Since the proposed framework has a substantially larger design space than that of the previous scheme of Shieh and Huang whose base lattice is a 1-D lattice, one can easily find instances in larger dimensions that can provide superior performance. Design examples with the base lattices $A_{2}$ , $D_{4}$ , $E_{8}$ , and Construction A lattices, respectively, are provided, and both theoretical and simulation results exhibit smaller gaps to the multiuser capacity as dimensions increase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.