Abstract

We present a three-lane exclusion process that exhibits the same universal fluctuation pattern as generic one-dimensional Hamiltonian dynamics with short-range interactions, viz., with two sound modes in the Kardar-Parisi-Zhang (KPZ) universality class (with dynamical exponent z=3/2 and symmetric Prähofer-Spohn scaling function) and a superdiffusive heat mode with dynamical exponent z=5/3 and symmetric Lévy scaling function. The lattice gas model is amenable to efficient numerical simulation. Our main findings, obtained from dynamical Monte-Carlo simulation, are: (i) The frequently observed numerical asymmetry of the sound modes is a finite time effect. (ii) The mode-coupling calculation of the scale factor for the 5/3-Lévy-mode gives at least the right order of magnitude. (iii) There are significant diffusive corrections which are non-universal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.