Abstract

The use of synchrotron radiation and large area detectors has increased the quality and quantity of X-ray and neutron diffraction data within the last decades. These advances call for new and better approaches to model and to interpret the data. Elastic X-ray diffraction corresponds to the Fourier transform of the thermally averaged electron density in the unit cell. This density is normally approximated as the convolution of a sum of static atomic densities and the thermal motion of the individual atoms. The static densities and thermal motion are equally important: Together they conform the entire model refined against a single set of measured data, and they must both be modeled correctly, or neither is. The advent of high-performance computers has made it feasible to obtain lattice-dynamical models based on periodic quantum-mechanical calculations, to describe the concerted motion of atoms and molecules through the crystal. Our recent calculations of Debye-Waller factors based on periodic ab-initio calculations for various molecular test systems [1] has prepared the ground for proposing the refinement of quantum-mechanically derived normal modes of vibration against diffraction experiments. As opposed to the standard approach using independent atomic motion, some of the advantages and possibilities that emerge are: 1. A physically reasonable picture of the molecular motion in the crystal. 2. Refinement against data obtained at multiple temperatures in a common model. 3. Modeling thermal diffuse scattering. 4. Reduction of the number of model parameters. 5. Anisotropic motion of H atoms. The approach is computationally expensive, but may prove useful for electron density studies, studies of thermal effects in crystals, i.e. studies of thermochromic and thermoelectric compounds, solid-state phase-transitions and to derive thermodynamic properties, e.g. free energies of polymorphic crystals. We will introduce the method and present some first results for model systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.