Abstract

The miscible displacement with fluid-solid dissolution reaction in a porous medium is a typical process in many industrial applications, such as underground-water pollution decontamination, and oil recovery or geological sequestration of carbon dioxide. It is a significant problem in engineering and physics applications. As is well known, the dissolution reaction can change the structure of the porous medium, which will have a great influence on the miscible displacement process. However, the relationship between the displacement process and the dissolution reaction in a porous medium has not been fully studied. In this study, the miscible displacement with dissolution in a porous medium is simulated by a lattice Boltzmann method (LBM). The study focuses on the influence of the internal structure change on the displacement process, and the further quantitative analyzing of the changes of the porosity and displacement efficiency by changing the Damkohler number (<i>Da</i>) and the Pèlcet number (<i>Pe</i>). The results show that when<i> Da</i> is large enough, the dissolution reaction will generate a few wormholes in the porous medium, and the displacement fluid will leave the porous medium along the wormholes, resulting in the decrease of the displacement efficiency. As <i>Da</i> increases, the reaction goes faster, the rate of change in porosity increases, and the wormholes become wider, thereby indeed yielding a larger displacement efficiency. With the increase of <i>Pe</i>, the fingerings develop faster, the rate of change in porosity decreases, and the displacement efficiency decreases as well.

Highlights

  • 其中 T 表示转置变换. 上式中的各个矩的物理含 义如下: r 是流体密度, e 和 e 分别是总能和能量的 平方, jx 和 jy 分别为 x 和 y 分量上的动量, jx = ρux, jy = ρuy, qx 和 qy 则是 x 和 y 分量上的能量通 量, pxx 和 pxy 分别为应力张量的对角线和非对角 线上的元素. 对于不可压流体, 流体密度近似为常 数, 记作 ρ0, 而密度波动为 δρ, 从而有 ρ = ρ0 + δρ . 相应矩空间中的平衡态如下: meq =

  • 过程早期, 溶解反应会消耗驱替流体的浓度, 抑制 指进的继续发展; 随着时间的增加, 溶解反应会不 断溶解多孔介质骨架, 在多孔介质内部生成虫洞, 驱替流体会直接沿着该虫洞离开多孔介质, 减小了 驱替效率; (2) 随着 Damkohler number (Da) 数的增大, 反应速率变大, 孔隙率 变化越大, 所生成的虫洞越宽, 驱替效率逐渐增大; (3) 随着 Pèlcet number (Pe) 数的增大, 指进增长的速率越快, 反应的量越小, 孔隙率变化越小, 驱替效率也随之 变小; (4) 不同的多孔介质结构下获得的孔隙率和驱 替效率随时间的变化趋势一致, 说明以上结论具有 普适性

Read more

Summary

Introduction

将随机模型和矩量法相结合以计算固体壁面处的 反应速率; Luo[9] 和 Oltéan[10] 等人通过 arbitraryLagrangian-Eulerian(ALE) 方法求解欧拉网格上 的物理问题 (如溶质扩散, 界面反应等), 该方法需 要及时更新欧拉网格; Soulaine 等人 [11] 提出了一 种 基 于 Dancy-Brinkman-Stokes(DBS) 方 程 的 方 法来模拟单相流动下固体的溶解反应, 并通过实验 验证了该方法的有效性. 近三十年来, 格子 Boltzamnn 方法 (lattice Boltzmann method, LBM) 作为一种介观的模拟方法, 可以更方便地处理复杂微观孔隙结构内流体与固 体之间、不同流体组分之间复杂的相互作用 [12−14], 对于多孔介质内流动与反应耦合的问题, 也受到了 学者们的广泛关注. 驱替流体 (Fluid 1): - 注入速度: u0 - 黏度: 1 - 溶液浓度: 1 - 溶质: 被驱替流体(Fluid 2): - 黏度: 2 - 溶液浓度: 2 剩余部分 的多孔介质中充满了粘性为 μ1 的驱替流体 (Fluid 1), 然后从多孔介质左侧以恒定速度 u0 持续注入

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call