Abstract

Due to its distinctive characteristics nanofluid has drawn much attention from academic communities since the last decade. Compared with conventional fluids, nanofluid has higher thermal conductivity and surface to volume ratio, which enables it to be an effective working fluid in terms of heat transfer enhancement. Recent experimental works have shown that with low nanoparticle concentrations (1–5vol.%), the effective thermal conductivity of the suspensions can increase by more than 20% for various mixtures. Although many outstanding experimental works have been carried out, the fundamental understanding of nanofluid characteristics and performance is still not sufficient. Much more theoretical and numerical studies are required. Over the past two decades, the lattice Boltzmann method (LBM) has experienced a rapid development and well accepted as a useful method to simulate various fluid behaviours. In the present study, the LBM is employed to investigate the characteristics of nanofluid flow and heat transfer. By coupling the density and temperature distribution functions, the hydrodynamics and thermal features of nanofluids are properly simulated. The effects of the parameters including Rayleigh number and volume fraction of nanoparticles on hydrodynamic and thermal performances are investigated. The results show that both Rayleigh number and solid volume fraction of nanoparticles have influences on heat transfer enhancement of nanofluids; and there is a critical value of Rayleigh number on the performance of heat transfer enhancement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call