Abstract

A lattice Boltzmann (LB) model for the interface tracking of immiscible ternary fluids is proposed based on the conservative Allen-Cahn (A-C) equation. A nonlocal equilibrium distribution function source term is adopted in the LB equation to eliminate the unwanted numerical items. With the new LB equation and the carefully designed equilibrium distribution function, Chapman-Enskog analysis shows that the present model can correctly recover the conservative A-C equation with second-order accuracy. A series of benchmark cases have been used to validate the accuracy and stability of the present model, including the classical diagonal translation of two concentric circular interfaces, the rigid-body rotation of Zalesak's disk, and the periodic shear deformation of two tangent circular interfaces. By coupling the dynamic LB model for Navier-Stokes equations, the stationary droplets, the spreading of a liquid lens, the spinodal decomposition, and the Raleigh-Taylor instability have also been simulated in the framework of ternary fluids. Utilizing the geometric interpolation method, the wettability effect of the horizontal boundary is considered and numerical tests with different wall contact angles have been performed to verify the applicability of the present model. All the numerical tests show that the present model can capture the interfaces among the immiscible ternary fluids accurately. Furthermore, using fewer discrete velocity directions, the present model shows higher numerical accuracy and stability compared with other existing numerical models. Therefore, it is promising to improve computational efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call