Abstract

Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha), and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground.

Highlights

  • Plants produce over 200,000 different metabolites that are not directly needed for their growth and development [1]

  • We investigated the interaction between the dandelion (T. officinale) and its native root feeding enemy, larvae of the common cockchafer beetle (M. melolontha)

  • Genetic manipulation and in vitro assays, we demonstrate that taraxinic acid glucoside, a highly concentrated chemical, deters cockchafer larvae and thereby protects the roots

Read more

Summary

Introduction

Plants produce over 200,000 different metabolites that are not directly needed for their growth and development [1]. Recent studies demonstrated that leaf secondary metabolites reduce herbivore damage and thereby counteract the negative impact of herbivores on plant growth, that herbivore abundance covaries with secondary metabolites across different environments, that the exclusion of herbivores leads to rapid changes in genotype frequencies and associated metabolites, and that genes encoding for defensive metabolites can be under differential selection [8,9,10,11,12] Together, these studies provide strong evidence for the hypothesis that above ground herbivores drive the evolution of leaf secondary metabolites. The lack of knowledge regarding fitness benefits of root secondary metabolites makes it difficult to understand their role in the evolution of plant–herbivore interactions

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call