Abstract

Thrombosis remains a major global health concern mainly characterized by high rates of morbidity and mortality. Animal models serve as an indispensable tool to understand the underlying pathogenesis of thrombosis and assess the efficacy of novel antithrombotic drugs. Currently, zebrafish has emerged as a valuable model organism for thrombosis research. However, the traditional method of studying zebrafish thrombosis requires a laborious and time-consuming procedure, including anesthesia and manual immobilization of zebrafish. In this study, based on hydrodynamic force, a lateral-immobilization zebrafish microfluidic chip (LIZMC) was designed to evaluate the cardiovascular system of multiple larvae within a single microscope field of view. Specifically, coupling with microscope imaging, real-time monitoring of the peripheral blood circulation in the tail of phenylhydrazine (PHZ)-induced zebrafish thrombosis was enabled. Furthermore, the reliability of LIZMC for in vivo evaluation of antithrombotic agents in zebrafish was verified using aspirin. Collectively, this novel LIZMC-based system can be used for in vivo zebrafish thrombosis studies and rapid screening of antithrombotic agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call