Abstract
ABSTRACTA random effects model for analyzing mixed longitudinal count and ordinal data is presented where the count response is inflated in two points (k and l) and an (k,l)-Inflated Power series distribution is used as its distribution. A full likelihood-based approach is used to obtain maximum likelihood estimates of parameters of the model. For data with non-ignorable missing values models with probit model for missing mechanism are used.The dependence between longitudinal sequences of responses and inflation parameters are investigated using a random effects approach. Also, to investigate the correlation between mixed ordinal and count responses of each individuals at each time, a shared random effect is used. In order to assess the performance of the model, a simulation study is performed for a case that the count response has (k,l)-Inflated Binomial distribution. Performance comparisons of count-ordinal random effect model, Zero-Inflated ordinal random effects model and (k,l)-Inflated ordinal random effects model are also given. The model is applied to a real social data set from the first two waves of the national longitudinal study of adolescent to adult health (Add Health study). In this data set, the joint responses are the number of days in a month that each individual smoked as the count response and the general health condition of each individual as the ordinal response. For the count response there is incidence of excess values of 0 and 30.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.