Abstract
High quality facial image editing is a challenging problem in the movie post-production industry, requiring a high degree of control and identity preservation. Previous works that attempt to tackle this problem may suffer from the entanglement of facial attributes and the loss of the person’s identity. Furthermore, many algorithms are limited to a certain task. To tackle these limitations, we propose to edit facial attributes via the latent space of a StyleGAN generator, by training a dedicated latent transformation network and incorporating explicit disentanglement and identity preservation terms in the loss function. We further introduce a pipeline to generalize our face editing to videos. Our model achieves a disentangled, controllable, and identity-preserving facial attribute editing, even in the challenging case of real (i.e., non-synthetic) images and videos. We conduct extensive experiments on image and video datasets and show that our model outperforms other state-of-the-art methods in visual quality and quantitative evaluation. Source codes are available at https://github.com/InterDigitalInc/latent-transformer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.