Abstract

Abstract Many semiconductor products are manufactured with mature technologies involving the uses of aluminum (Al) lines and tungsten (W) vias. High resistances of the vias were sometimes observed only after electrical or thermal stress. A layer of Ti oxide was found on such a via. In the wafer processing, the post W chemical mechanical planarization (WCMP) cleaning left residual W oxide on the W plugs. Ti from the overlaying metal line spontaneously reduced the W oxide, through which Ti oxide formed. Compared with W oxide, the Ti oxide has a larger formation enthalpy, and the valence electrons of Ti are more tightly bound to the O ion cores. As a result, the Ti oxide is more resistive than the W oxide. Consequently, the die functioned well in the first test in the fab, but the via resistance increased significantly after a thermal stress, which led to device failure in the second test. The NH4OH concentration was therefore increased to more effectively remove residual W oxide, which solved the problem. The thermal stress had prevented the latent issue from becoming a more costly field failure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.