Abstract

Optical buffers implemented by fiber delay lines (FDLs) have a volatile nature due to signal loss and noise accumulation. Packets suffer from excessive recirculation through FDLs, and they may be dropped eventually in their routing paths. Because of this, packet scheduling becomes more difficult in FDL buffers than in RAM buffers, and requires additional design considerations for reducing packet loss. We propose a latency-aware scheduling scheme and an analytical model for all-optical packet switching networks with FDL buffers. The latency-aware scheduling scheme is intended to minimize the packet loss rate of the networks by ranking packets in the optimal balance between latency and residual distance. The analytical model is based on non-homogeneous Markovian analysis to study the effect of the proposed scheduling scheme on packet loss rate and average delay. Furthermore, our numerical results show how various network parameters affect the optimal balance. We demonstrate quantitatively how to achieve the proper balance between latency and residual distance so that the network performance can be improved significantly. For instance, we find that under a given latency limit and light traffic load our scheduling scheme achieves a packet loss rate 71% lower than a scheduling scheme that ranks packets simply based on latency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.