Abstract

To investigate environmental variability during the late Holocene in the western Gulf of Maine, USA, we collected a 142-year-old living bivalve (Arctica islandica) in 2004, and three fossil A. islandica shells of the Medieval Warm Period (MWP) and late MWP / Little Ice Age (LIA) period (corrected 14CAMS = 1030 ± 78 ad; 1320 ± 45 ad; 1357 ± 40 ad) in 1996. We compared the growth record of the modern shell with continuous plankton recorder (CPR) time-series (1961–2003) from the Gulf of Maine. A significant correlation (r2 = 0.55; p < 0.0001) exists between the standardized annual growth index (SGI) of the modern shell and the relative abundance of zooplankton species Calanus finmarchicus. We therefore propose that SGI data from A. islandica is a valid proxy for paleo-productivity of at least one major zooplankton taxa. SGIs from these shells reveal significant periods of 2–6 years (NAO-like) based on wavelet analysis, multitaper method (MTM) analysis and singular spectrum analysis (SSA) during the late Holocene. Based on established physical oceanographic observation in the Gulf of Maine, we suggest that slope water variability coupled with North Atlantic Oscillation (NAO) dynamics is primarily responsible for the observed SGI variability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call