Abstract

AbstractA unique regional climate progression, ca 14.2–11.5 cal ka BP, in the eastern Great Lakes region of North America is suggested by subfossil logs, high-resolution 14C dates, and established proxy records in New York, USA. The progression began with a northern boreal-type climate ca. 14.2–13.1 ka coeval with the expansion of Lake Iroquois, a transition to a southern boreal-type climate ~13.1–12.9 ka that coincided with the transition of Lake Iroquois into progressively lower lake levels, and a continuation of the southern boreal-type climate ~12.9–11.5 ka. These conditions and changes are evident in the tree rings and relative dominance of tamarack (Larix laricina) and spruce species (Picea spp.) plus the presence of black ash (Fraxinus nigra) as the only thermophilous species. Together they suggest variations in atmospheric moisture levels, surface winds, temperature extremes, and/or an enhanced seasonality over time. Here we propose that the evolution of the glacial Great Lakes and their interactions with ice sheets, meltwater, winds, and regional topography created a regional glacial lake-effect climate, 14.2–11.5 cal ka BP, that was opposite to the established warming Bølling-Allerød–cold Younger Dryas climate progression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.