Abstract

Strain sensors are devices used in applications such as electronic skin, prosthetic limbs, and e-textile applications, etc., for the purpose of measuring the physical elongation of a desired structure under a given or applied force. An artificial throat, using a strain sensor, was recently developed as an aid for speech impaired individuals. Strain sensors have been developed using graphene and polydimethylsiloxane (PDMS), with a reported gauge factor ranging from (5~120). We have developed a strain sensor through laser scribing. Using laser scribing is a recent and facile technology, used for printed electronics. Complex geometries and patterns can be drawn very easily using this method. The laser scribing method relies on the property of certain materials to form a graphene-like conductive material upon irradiation by lasers. Polyimide and graphene oxide (GO) are two such materials.In these experiments, 2×2 cm sheet of polyimide were taken and printed 1×1 cm box on the sheet using a laser patterning setup of 450 nm wavelength. Graphene oxide solution was drop-casted on the reduced polyimide sheet of 1×1cm, to increase its sensitivity, and then the drop-casted graphene oxide was reduced using the same laser. The strain sensor was characterized by a micro-strain testing machine. The normalized resistance was plotted against strain and the gauge factor was calculated. The effect of the laser intensity was investigated and different gauge factors were calculated by varying the intensity of the laser. The gauge factors were found to be in the range of 49-54 and was compared with the polyimide reduced strain sensor (without drop-casting the GO).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.