Abstract

This work is devoted to a non-intrusive experimental approach, based on Laser Multi-reflection technique, in the investigation of thickness distribution variations and wave’s dynamics of a liquid film flowing over an inclined plane. This investigation was first founded on the needs of quantifying the liquid film thickness and on minimizing, as much as possible, some drawbacks pointed out, in the literature, throughout the experimental techniques available. Moreover, the technique could be applied to transparent, opaque as well as particle laden liquid films. The technique is validated and evaluated using two approaches according to the flow case: stable or instable. In case of stable flow, the comparison was made using Spectroscopic Ellipsometry and theoretical prediction established by the Nusselt model. For a wavy interface a setup, especially devoted to that purpose, was used to validate the accuracy of the measurements. In both cases the uncertainties were within 5%. The experiments are discussed hereafter including the accuracy of the results. Some experimental data, for plane inclination ranging from 1° to 10°, are reported. The data takes into account the film thickness at various positions. The instability threshold is also reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.