Abstract

Background and aims: Conventional water jet devices have been used for injecting fluid to lift up lesions during endoscopic submucosal dissection or endoscopic mucosal resection procedures. However, these devices cannot dissect the submucosal layer effectively. Here we aim to elucidate the dissection capability of a laser-induced pulsed water jet and to clarify the mechanism of dissection with layer selectivity. Materials (Subjects) and methods: Pulsed water jets were ejected from a stainless nozzle by accelerating saline using the energy of a pulsed holmium: yttrium-aluminum-garnet laser. The impact force (strength) of the jet was evaluated using a force meter. Injection of the pulsed jet into the submucosal layer was documented by high-speed imaging. The physical properties of the swine esophagus were evaluated by measuring the breaking strength. Submucosal dissection of the swine esophagus was performed and the resection bed was evaluated histologically. Results: Submucosal dissection of the esophagus was accomplished at an impact force of 1.11-1.47 N/pulse (laser energy: 1.1-1.5 J/pulse; standoff distance: 60 mm). Histological specimens showed clear dissection at the submucosal layer without thermal injury. The mean static breaking strength of the submucosa (0.11 ± 0.04 MPa) was significantly lower than that of the mucosa (1.32 ± 0.18 MPa), and propria muscle (1.45 ± 0.16 MPa). Conclusions: The pulsed water jet device showed potential for achieving selective submucosal dissection. It could achieve mucosal, submucosal, and muscle layer selectivity owing to the varied breaking strengths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.