Abstract

In this work, a flexible electrochemical sensor was developed for the detection of organophosphorus pesticides (OPs). To fabricate the sensor, graphene was generated in situ by laser-induced graphene (LIG) technology on a flexible substrate of polyimide (PI) film to form a three-electrode array, and pralidoxime (PAM) chloride was used as the probe molecule. CeO2 was used to modify the working electrode to improve the sensitivity of the sensor because of its electrocatalytic effect on the oxidation of PAM, and the Ag/AgCl reference electrode was prepared by the drop coating method. The effects of the laser power, laser scanning speed, and CeO2 modification on the electrochemical properties of the sensor were studied in detail. The results prove that the sensor has good repeatability, stability, and anti-interference ability, and it shows an excellent linear response in the chlorpyrifos concentration range from 1.4 × 10−8 M to 1.12 × 10−7 M with the detection limit of 7.01 × 10−10 M.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call