Abstract

Chemical doping can be used to control the charge-carrier polarity and concentration in two-dimensional van der Waals materials. However, conventional methods based on substitutional doping or surface functionalization result in the degradation of electrical mobility due to structural disorder, and the maximum doping density is set by the solubility limit of dopants. Here we show that a reversible laser-assisted chlorination process can be used to create high doping concentrations (above 3 × 1013 cm−2) in graphene monolayers with minimal drops in mobility. The approach uses two lasers—with distinct photon energies and geometric configurations—that are designed for chlorination and subsequent chlorine removal, allowing highly doped patterns to be written and erased without damaging the graphene. To illustrate the capabilities of our approach, we use it to create rewritable photoactive junctions for graphene-based photodetectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call