Abstract
We present a novel manifold learning approach to efficiently identify low-dimensional structures, known as manifolds, embedded in large-scale, high dimensional MRI datasets for brain tumor growth prediction. The datasets consist of a series of MRI scans for three patients with tumor and progressed regions identified. We attempt to identify low dimensional manifolds for tumor, progressed and normal tissues, and most importantly, to verify if the progression manifold exists - the bridge between tumor and normal manifolds. By mapping the bridge manifold back to MRI image space, this method has the potential to predict tumor progression, thereby, greatly benefiting patient management. Preliminary results supported our hypothesis: normal and tumor manifolds are well separated in a low dimensional space and the progressed manifold is found to lie roughly between them but closer to the tumor manifold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.