Abstract
SummaryThe AP2 adaptor complex (α, β2, σ2, and μ2 subunits) crosslinks the endocytic clathrin scaffold to PtdIns4,5P2-containing membranes and transmembrane protein cargo. In the “locked” cytosolic form, AP2's binding sites for the two endocytic motifs, YxxΦ on the C-terminal domain of μ2 (C-μ2) and [ED]xxxL[LI] on σ2, are blocked by parts of β2. Using protein crystallography, we show that AP2 undergoes a large conformational change in which C-μ2 relocates to an orthogonal face of the complex, simultaneously unblocking both cargo-binding sites; the previously unstructured μ2 linker becomes helical and binds back onto the complex. This structural rearrangement results in AP2's four PtdIns4,5P2- and two endocytic motif-binding sites becoming coplanar, facilitating their simultaneous interaction with PtdIns4,5P2/cargo-containing membranes. Using a range of biophysical techniques, we show that the endocytic cargo binding of AP2 is driven by its interaction with PtdIns4,5P2-containing membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.