Abstract
Background: Meeting the growing industry demand for Data Science requires cross-disciplinary teams that can translate machine learning research into production-ready code. Software engineering teams value adherence to coding standards as an indication of code readability, maintainability, and developer expertise. However, there are no large-scale empirical studies of coding standards focused specifically on Data Science projects. Aims: This study investigates the extent to which Data Science projects follow code standards. In particular, which standards are followed, which are ignored, and how does this differ to traditional software projects? Method: We compare a corpus of 1048 Open-Source Data Science projects to a reference group of 1099 non-Data Science projects with a similar level of quality and maturity. Results: Data Science projects suffer from a significantly higher rate of functions that use an excessive numbers of parameters and local variables. Data Science projects also follow different variable naming conventions to non-Data Science projects. Conclusions: The differences indicate that Data Science codebases are distinct from traditional software codebases and do not follow traditional software engineering conventions. Our conjecture is that this may be because traditional software engineering conventions are inappropriate in the context of Data Science projects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.