Abstract
The horizontal transfer of large gene clusters by mobile elements is a key driver of prokaryotic adaptation in response to environmental stresses. Eukaryotic microbes face similar stresses; however, a parallel role for mobile elements has not been established. A stress faced by many microorganisms is toxic metal ions in their environment. In fungi, identified mechanisms for protection against metals generally rely on genes that are dispersed within an organism's genome. Here, we discover a large (∼85 kb) region that confers tolerance to five metal/metalloid ions (arsenate, cadmium, copper, lead, and zinc) in the genomes of some, but not all, strains of a fungus, Paecilomyces variotii. We name this region HEPHAESTUS (Hφ) and present evidence that it is mobile within the P.variotii genome with features characteristic of a transposable element. HEPHAESTUS contains the greatest complement of host-beneficial genes carried by a transposable element in eukaryotes, suggesting that eukaryotic transposable elements might play a role analogous to bacteria in the horizontal transfer of large regions of host-beneficial DNA. Genes within HEPHAESTUS responsible for individual metal tolerances include those encoding a P-type ATPase transporter-PcaA-required for cadmium and lead tolerance, a transporter-ZrcA-providing tolerance to zinc, and a multicopper oxidase-McoA-conferring tolerance to copper. In addition, a subregion of Hφ confers tolerance to arsenate. The genome sequences of other fungi in the Eurotiales contain further examples of HEPHAESTUS, suggesting that it is responsible for independently assembling tolerance to a diverse array of ions, including chromium, mercury, and sodium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.