Abstract

This paper presents results on RF power output and efficiency of IMPATT oscillators obtained from a large-signal model of these devices. The results are obtained from a closed-form solution of the nonlinear equations describing a Read-type IMPATT diode. The closed-form solution is obtained by assuming a short transit time through the drift region compared to the RF period. The solution is used to obtain the large-signal diode impedance. The analysis shows that the power output of an IMPATT diode depends strongly on the series load resistance presented to the active part of the diode and that the change in diode reactance with increasing bias current also depends on the series resistance. Plots of power output as a function of frequency, bias current, and load resistance are presented. Frequency tuning of the oscillator through current variation is also discussed. Experimental results are presented and compared with the theoretical ones wherever possible. The results lead to an improved understanding of such oscillators and are extremely useful in optimizing their performance and determining their limitations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call