Abstract

BackgroundDeveloping liquid biopsy technology with higher sensitivity and specificity especially for low-frequency mutations remains crucial. This study demonstrated superior performance of the newly developed digital PCR (dPCR) kit for ctDNA-based EGFR p.T790M detection in metastatic non-small-cell lung cancer (NSCLC) against ARMS-PCR.MethodsThis large-scale, multi-centered diagnostic study recruited 1,045 patients including 1,029 patients diagnosed with advanced NSCLC and 16 patients with specific samples between April 1st 2018 and November 30th 2019. EGFR p.T790M in plasma samples from mNSCLC patients were tested using dPCR with ADx-ARMS PCR and Cobas® EGFR Mutation Test V2 as comparator assays to confirm cut-off value for dPCR and evaluate its performance against ARMS-PCR-based assays. Efficacy was evaluated for patients with EGFR p.T790M detected by dPCR or ARMS-PCR, who underwent Osimertinib treatment.ResultsThe sensitivity, specificity, and concordance of dPCR against ADx-ARMS PCR was 98.15%, 88.66% and 90.16%, respectively for 1,026 plasma samples. Additional 9.26% patients were detected positive by dPCR. The majority of those samples had a mutation allele frequency between 0.1% and 1%. In 45 paired tissue and plasma samples, the sensitivity improved from 30.77% to 53.85% by dPCR with the specificity over 90%. The response of Osimertinib in 74 EGFR p.T790M-positive patients detected by dPCR, including 26 determined as negative by ARMS-PCR, were evaluated to have an ORR of 44.59% and a DCR of 90.54%.ConclusionsdPCR is a sensitive and accurate tool for ctDNA-based EGFR p.T790M detection due to its significantly improved sensitivity without compromising specificity, and dPCR is equivalent to ARMS-PCR as a companion diagnostic tool while benefiting more patients under Osimertinib treatment.Trial RegistrationChinese Clinical Trial Registry identifier: ChiCTR2100043147.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.