Abstract

The merger of two neutron stars launches a relativistic jet, which must be driven by a strong large-scale magnetic field. However, the magnetohydrodynamical mechanism required to build up this magnetic field remains uncertain. By performing an ab initio super-high-resolution neutrino-radiation magnetohydrodynamics merger simulation in full general relativity, we show that the αΩ dynamo mechanism, driven by the magnetorotational instability, builds up the large-scale magnetic field inside the long-lived remnant of the binary neutron star merger. As a result, the magnetic field induces a Poynting-flux-dominated relativistic outflow with an isotropic equivalent luminosity of ~1052 erg s−1 and a magnetically driven post-merger mass ejection of ~0.1 M⊙. Therefore, the magnetar hypothesis, in which an ultra-strongly magnetized neutron star drives a relativistic jet in binary neutron star mergers, is possible. Magnetars can be the engines of short, hard gamma-ray bursts, and they should be associated with very bright kilonovae, which current telescopes could observe. Therefore, this scenario is testable in future observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call