Abstract
All-solid-state lithium metal batteries (ASSLMBs) are considered as the most promising candidates for the next-generation high-safety batteries. To achieve high energy density in ASSLMBs, it is essential that the solid-state electrolytes (SSEs) are lightweight, thin, and possess superior electrochemical stability. In this study, a feasible and scalable fabrication approach to construct 3D supporting skeleton using an electro-blown spinning technique is proposed. This skeleton not only enhances the mechanical strength but also hinders the migration of Li-salt anions, improving the lithium-ion transference number of the SSE. This provides a homogeneous distribution of Li-ion flux and local current density, promoting uniform Li deposition. As a result, based on the mechanically robust and thin SSEs, the Li symmetric cells show outstanding Li plating/stripping reversibility. Besides, a stableinterfacecontact between SSE and Li anode has been established with the formation of an F-enriched solid electrolyte interface layer. The solid-state Li|sulfurized polyacrylonitrile (Li|SPAN) cell achieves a capacity retention ratio of 94.0% after 350 cycles at 0.5 C. Also, the high-voltage Li|LCO cell shows a capacity retention of 92.4% at 0.5 C after 500 cycles. This fabrication approach for SSEs is applicable for commercially large-scale production and application in high-energy-density and high-safety ASSLMBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.